

TACCALONOLIDE C AND D, TWO PENTACYCLIC STEROIDS OF *TACCA PLANTAGINEA*

ZHONG-LIANG CHEN, BAO-DE WANG and JI-HUI SHEN

Shanghai Institute of Materia Medica, Academia Sinica, Shanghai 200031, China

(Revised received 8 February 1988)

Key Word Index—*Tacca plantaginea*; Taccaceae; pentacyclic steroid; bitter principles; taccalonolides.

Abstract—Two pentacyclic steroid bitter principles, taccalonolide C and D have been isolated from *Tacca plantaginea* and the structures were established by spectroscopic methods.

INTRODUCTION

The plants of *Tacca* genus are distributed in tropical regions. In China there are only three species and these have all been used as folk medicine [1]. Some *Tacca* species have been investigated chemically and found to contain amino acids [2], flavones and anthocyanins [3], steroid saponins and sapogenins [4, 5] and an amorphous bitter compound taccalin $C_{18}H_{26}O_7$ [6]. In a previous paper we reported the isolation of the two bitter principles, taccalonolide A(1) and B(2), from the rhizome of *T. plantaginea* [7]. Taccalonolide A and B have a pentacyclic steroid skeleton which was isolated from a natural source for the first time. Now we report the isolation and structure determination of the two related compounds, taccalonolide C(3) and D(4).

RESULTS AND DISCUSSION

Taccalonolide C, mp 305° FDMS: 703 $[M+1]^+$, molecular formula $C_{36}H_{46}O_{14}$. IR ν_{max}^{KBr} cm^{-1} , 3450 (OH), 1744, 1728 (ester and lactone carbonyls), 1704 (ketone carbonyl). By comparison of 3 with 1 and 2, taccalonolide C does not show the $-C=C-O-CO-$ group in the IR absorption at 1820 cm^{-1} . The ^{13}C NMR spectrum of 3 reveals two keto carbonyl carbons (δ 209.16 s and 202.42 s), five ester and/or lactone carbonyl groups, no olefinic carbon, five $-CH-O-$, one $-C-O-$, nine $-Me$, two $-CH_2-$, nine $-C-H$ and three quaternary carbons (by off-resonance and DEPT techniques).

The 1H NMR spectrum of 3 was measured in several solvents, because some proton signals were overlapped by acetyl methyl protons and/or solvent signals. All the signals were assigned by proton-proton spin decoupling and comparison with 1 and 2 (Table 1).

Taccalonolide C has the same molecular formula as taccalonolide A(1) and the majority of the proton signals

are similar, but it does not contain an olefinic proton, and the chemical shift of H-7 was shifted downfield to δ 5.22 d (H-7 was at 4.22 d in 1) and the chemical shift of H-15 was shifted upfield to 5.02 dd . In the comparison of 3 to 1 and 2 (H-15, 5.47 dd , in 1 and 4.00 dd in 2), it seems to be lactonized at the C-15 position and we propose structure 3 for taccalonolide C.

The stereochemistry of 3 was determined with the NOE difference technique. It showed $1\alpha, 7\beta, 11\alpha$ and 12α -tetraacetoxy- 2α , 3α -epoxy- 24β -methyl- 25β -methyl and 25α -hydroxy groups and the NOE enhancement data were as shown in Fig. 1.

Taccalonolide D, mp 284°, FDMS: m/z 703 $[M+1]^+$, molecular formula $C_{36}H_{46}O_{14}$, the same as 1. By comparison of the 1H NMR spectrum of 4 with that of 1, the H-7 (δ 4.00 $br\,d$) and H-15 (5.47 dd) of 1 shifted to H-7 (5.16 d) and H-15 (4.47 dd) for 4. Therefore it is obvious that taccalonolide D contains C-7 acetoxy and C-15 hydroxy groups.

Taccalonolide D is not very stable and it is partly transformed to 1 on silica gel column chromatography by an acetyl migration. The similar acetyl migrations under mild condition are well-known in *Aconitum* alkaloids [8] and other compounds [9].

Upon examination of the Dreiding stereo molecular model, the distance between the C-7 and C-15 oxygen atoms of taccalonolide analogues approximate 2.5 Å. It is quite possible for 4 to form a seven-membered ring *semi-ortho* ester intermediate and then transform to the C-15 acetoxy compound 1 (Scheme 1). But 1 does not show this acetyl migration under the same conditions, perhaps due to the hydrogen bonding formation of the C-7 hydroxy group with the C-6 carbonyl.

Owing to the presence of an enol γ -lactone partial structure, taccalonolide A, B and D show absorptions at 1820 and 1750 cm^{-1} in their spectra and they are very easy to confuse with a six-membered ring anhydride [6]. Taccalonolide A, B and D taste very bitter and the less bitter counterpart taccalonolide C shows no cytotoxicity to a P-388 cell culture and no antimalaria activity. Therefore the enol- γ -lactone portion may be important for the biological activities.

Table 1. 400 MHz ^1H NMR spectral data of taccalonolide C (3) and D (4)

H	Taccalonolide C		Taccalonolide D
	Acetone- d_6	CDCl_3	CDCl_3
1	4.85 <i>d</i> (5.5)	4.73 <i>d</i> (5.5)	4.72 <i>d</i> (5.5)
2	3.41 <i>dd</i> (4, 5)	3.46 <i>dd</i> (4, 5)	3.52 <i>dd</i> (4, 5)
3	3.34 <i>m</i>	3.37 <i>m</i>	3.34 <i>m</i>
4	2.01 <i>ddd</i>	*	2.19 <i>dd</i>
	2.18 <i>ddd</i>	*	2.28 <i>ddd</i>
5	2.91 <i>dd</i> (7, 10.5)	2.84 <i>dd</i> (6, 11)	2.77 <i>dd</i> (6, 11)
7	5.10 <i>d</i> (12)	5.22 <i>d</i> (12)	5.16 <i>d</i> (11)
8	2.27 <i>ddd</i> (12, 12, 12)	*	1.75 <i>dd</i> (11, 11)
9	3.08 <i>dd</i> (12, 12)	2.82 <i>dd</i> (12, 11)	2.83 <i>dd</i> (11, 13)
11	5.41 <i>dd</i> (12, 2)	5.36 <i>dd</i> (12, 3)	5.32 <i>dd</i> (12, 3)
12	5.31 <i>d</i> (3)	5.28 <i>d</i> (3)	5.22 <i>d</i> (3)
14	2.61 <i>dd</i> (8, 11)	2.18	2.24 <i>dd</i> (9, 10)
15	5.13 <i>dd</i> (9, 9)	5.02 <i>dd</i> (9, 9)	4.47 <i>dd</i> (9, 9)
16	2.40 <i>dd</i> (10, 12)	2.55 <i>dd</i> (10, 13)	2.42 <i>dd</i> (10, 12)
17	2.23 <i>dd</i> (13, 11)	*	1.87 <i>dd</i> (11, 13)
Me-18	1.07 <i>s</i>	0.99 <i>s</i>	0.91 <i>s</i>
Me-19	0.86 <i>s</i>	0.82 <i>s</i>	0.78 <i>s</i>
20	1.85 <i>m</i>	1.74 <i>m</i>	*
Me-21	0.82 <i>d</i> (7)	0.83 <i>d</i> (7)	0.89 <i>d</i> (7)
22	2.40 <i>dd</i> (4.5, 13)	2.51 <i>dd</i> (5, 13)	5.05 <i>d</i> (2)
	3.19 <i>dd</i> (12, 13)	2.92 <i>dd</i> (12, 13)	
Me-27	1.37 <i>s</i>	1.45 <i>s</i>	1.66 <i>s</i>
Me-28	1.14 <i>s</i>	1.18 <i>s</i>	1.31 <i>s</i>
Ac	1.92 <i>s</i>	2.00 <i>s</i>	1.86 <i>s</i>
	2.05 <i>s</i>	2.14 <i>s</i>	2.02 <i>s</i>
	2.06 <i>s</i>	2.16 <i>s</i>	2.11 <i>s</i>
	2.15 <i>s</i>	2.27 <i>s</i>	2.12 <i>s</i>

*Overlapped by signals of acetyl methyl groups.

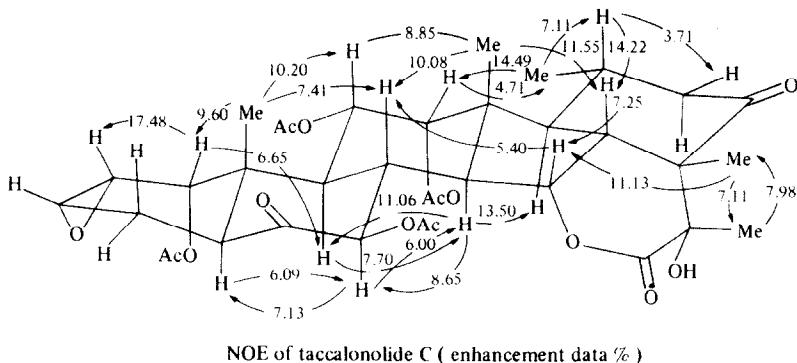
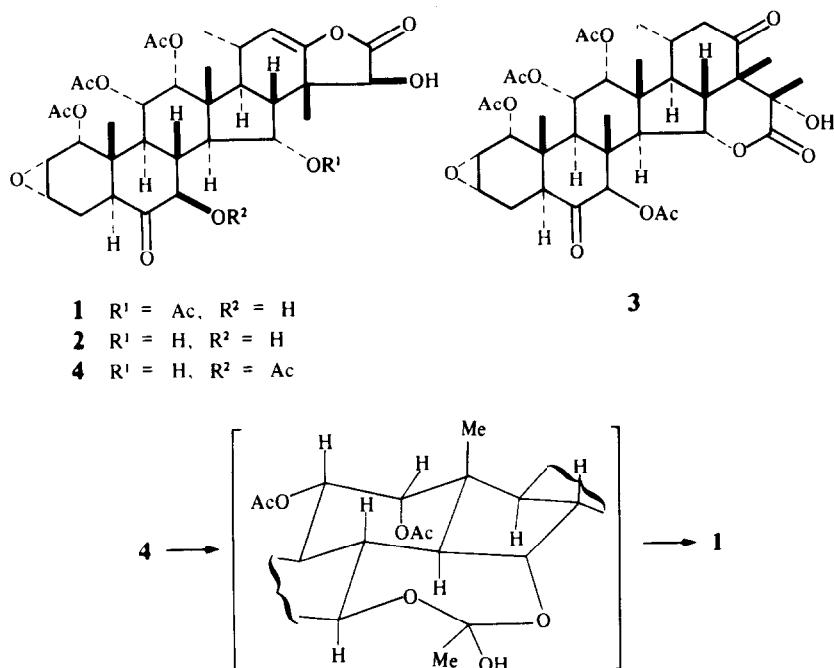


Fig. 1. NOE of taccalonolide C (enhancement data %).


EXPERIMENTAL

The plant material used in this study was collected in Kwangsi province, near Liu-Zhou county during June 1985. A voucher specimen has been deposited at Kwangsi Institute of Botany (Guilin, China). The dry powdered rhizome material (6 kg) was extracted with EtOH and the resulting extract was dissolved in Et₂O, and the Et₂O soluble part was first separated by silica gel CC with the solvent systems: petrol, petrol-ether

(9:1, 3:1, 1:1) and then Et₂O, Et₂O-MeOH (9:1). It afforded ceryl alcohol (petrol-Et₂O, 3:1), sitosterol (petrol-Et₂O, 1:1) and crude bitter substances (Et₂O). The crude amorphous bitter substances were separated further with silica gel rechromatography (CHCl₃, CHCl₃-EtOH 99:1, 9:1, 3:1 and 1:1) and 1, 7.5 g, 2, 90 mg, 3, 190 mg and 4, 40 mg were obtained.

Taccalonolide A, mp 215°, MS *m/z*: 702 [M]⁺ C₃₆H₄₆O₁₄; IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3460 (OH), 1827, 1745, 1730 (CO).

Taccalonolide B, mp 266°C, MS *m/z*: 660 [M]⁺ C₃₄H₄₄O₁₃; IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3450 (OH), 1825, 1750, 1730 (CO).

Scheme 1.

Taccalonolide C, mp 305°C, $[\alpha]_D^{14} +$ (but very small), FDMS: m/z 703 $[M+1]^+$ $C_{36}H_{46}O_{14}$, IR ν_{max}^{KBr} cm^{-1} : 3450 (OH), 1744, 1728, 1704 (CO). ^{13}C NMR (DMSO- d_6 , 100 MHz): δ 209.16 s, 202.42 s, 169.58 s, 169.46 s, 169.15 s, 168.95 s, 168.20 s, 78.97 s, 76.61 d, 73.91 s, 73.11 d, 71.95 d, 70.32 d, 56.10 d, 51.47 d, 51.34 d, 49.24 d, 45.97 d, 45.96 d, 43.59 s, 42.11 s, 42.11 s, 41.97 d, 40.30 d, 37.40 d, 30.40 d, 21.06 q, 20.96 t, 20.78 q, 20.69 q, 20.44 q, 20.18 q, 20.12 q, 19.49 q, 12.34 q, 12.14 q.

Taccalonolide D, mp 284° $[\alpha]_D^{24} +31^\circ$ (CHCl_3, c 0.032), FDMS m/z : 703 $[M+1]^+$ $C_{36}H_{46}O_{14}$, IR ν_{max}^{KBr} cm^{-1} : 3440 (OH), 1810, 1740 (CO).

Acknowledgements—This research was supported by Science Fund of Academia Sinica and the author Z-L. Chen, as an Alexander von Humboldt research fellow, wishes to thank the AvH Foundation for instrument donation and Dr Shu-Quan Zhong for collection and identification of the plant material.

REFERENCES

1. How, F. (1982) *A Dictionary of the Families and Genera of Chinese Seed Plants* 2nd Edn, p. 477. Sciences Press (Chinese).
2. Tiwari, K. P. and Tripathi, R. D. (1980) *Vijnana Parishad Anusandhan Patrika* **23**, 157; *Chem. Abst.* **94** 80285a.
3. Tripathi, R. D. and Tiwari, K. P. (1981) *Planta Med.* **41**, 414.
4. Kelginbaev, A. N., Gorovits, M. B. and Abubakirov, N. K. (1980) *Khim. Prir. Soedin.* 352.
5. Zhou, J., Chen, C., Liu, R. and Yang C. (1983) *Acta Bot. Sinica* **25**, 588.
6. Scheuer, P. J., Swanholm, C. E. and Madamba L. A. (1963) *Lloydia* **26**, 133.
7. Chen, Z., Wang, B. and Chen, M. (1987) *Tetrahedron Letters* **28** 1673.
8. Reinecke, M. G., Minter, D. E., Chen, D. and Yan, W. (1986) *Tetrahedron* **42** 6621.
9. Flowers, H. M. (1971) *The Chemistry of the Hydroxy Group* Part 2, Chap. 18, (Patai, S., et al., eds). Interscience, New York.